MST neurons respond to optic flow and translational movement.
نویسنده
چکیده
We recorded the responses of 189 medial superior temporal area (MST) neurons by using optic flow, real translational movement, and combined stimuli in which matching directions of optic flow and real translational movement were presented together. One-half of the neurons (48%) showed strong responses to optic flow simulating self-movement in the horizontal plane, and 24% showed strong responses to translational movement. Combining optic flow stimuli with matching directions of translational movement caused substantial changes in both the amplitude of the best responses (44% of neurons) and the strength of direction selectivity (71% of neurons), with little effect on which stimulus direction was preferred. However, combining optic flow and translational movement such that opposite directions were presented together changed the preferred direction in 45% of the neurons with substantial changes in the strength of direction selectivity. These studies suggest that MST neurons combine visual and vestibular signals to enhance self-movement detection and disambiguate optic flow that results from either self-movement or the movement of large objects near the observer.
منابع مشابه
Heading representation in MST: sensory interactions and population encoding.
Dorsal medial superior temporal cortex (MSTd)'s population response encodes heading direction from optic flow seen during fixation or pursuit. Vestibular responses in these neurons might enhance heading representation during self-movement in light or provide an alternative basis for heading representation during self-movement in darkness. We have compared these hypotheses by recording MSTd neur...
متن کاملExtrastriate area MST and parietal area VIP similarly represent forward headings.
Many studies have documented the involvement of medial superior temporal extrastriate area (MST) in the perception of heading based on optic flow information. Furthermore, both heading perception and the responses of MST neurons are relatively stable in the presence of eye movements that distort the retinal flow information on which perception is based. Area VIP in the posterior parietal cortex...
متن کاملEmulating the visual receptive-field properties of MST neurons with a template model of heading estimation.
We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field thro...
متن کاملBehavioral influences on cortical neuronal responses to optic flow.
Optic flow selectively activates neurons in medial superior temporal (MST) cortex. We find that many MST neurons yield larger and more selective responses when the optic flow guides a subsequent eye movement. Smaller, less selective responses are seen when optic flow is preceded by a flashed precue that guides eye movements. Selectivity can decrease by a third (32%) after a flashed precue is pr...
متن کاملOptic flow illusion and single neuron behaviour reconciled by a population model.
Radial patterns of optic flow contain a centre of expansion that indicates the observer's direction of self-movement. When the radial pattern is viewed with transparently overlapping unidirectional motion, the centre of expansion appears to shift in the direction of the unidirectional motion [Duffy, C.J. & Wurtz, R.H. (1993) Vision Res., 33, 1481-1490]. Neurons in the medial superior temporal (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1998